Machine learning approach for text and document mining

نویسندگان

  • Vishwanath Bijalwan
  • Pinki Kumari
  • Jordan Pascual
  • Vijay Bhaskar Semwal
چکیده

Text Categorization (TC), also known as Text Classification, is the task of automatically classifying a set of text documents into different categories from a predefined set. If a document belongs to exactly one of the categories, it is a single-label classification task; otherwise, it is a multi-label classification task. TC uses several tools from Information Retrieval (IR) and Machine Learning (ML) and has received much attention in the last years from both researchers in the academia and industry developers. In this paper, we first categorize the documents using KNN based machine learning approach and then return the most relevant documents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Approach for Concept-based Automatic Multi- Document Summarization using Machine Learning

Text Summarization is compressing the source text into a shorter version preserving its information content and overall meaning. It is very complicated for human beings to manually summarize large documents of text. Text summarization plays an important role in the area of natural language processing and text mining. Many approaches use statistics and machine learning techniques to extract sent...

متن کامل

روش جدید متن‌کاوی برای استخراج اطلاعات زمینه کاربر به‌منظور بهبود رتبه‌بندی نتایج موتور جستجو

Today, the importance of text processing and its usages is well known among researchers and students. The amount of textual, documental materials increase day by day. So we need useful ways to save them and retrieve information from these materials. For example, search engines such as Google, Yahoo, Bing and etc. need to read so many web documents and retrieve the most similar ones to the user ...

متن کامل

Machine Learning approach to Document Classification using Concept based Features

Text mining refers to the process of deriving high-quality information from text. Text processing involves in search and replace in electronic format of text. A number of approaches have been developed to represent and classify text documents. Most of the approach tries to attain good classification performance while taking a document only by words. We propose a concept based methodology instea...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Feature Selection Technique for Text Document Classification: An Alternative Approach

Text classification and feature selection plays an important role for correctly identifying the documents into particular category, due to the explosive growth of the textual information from the electronic digital documents as well as world wide web. In the text mining present challenge is to select important or relevant feature from large and vast amount of features in the data set. The aim o...

متن کامل

Optimization of Text Classification Using Supervised and Unsupervised Learning Approach

Text Classification, also known as text categorization, is the task of automatically allocating unlabeled documents into predefined categories. Text Classification means allocating a document to one or more categories or classes. The ability to accurately perform a classification task depends on the representations of documents to be classified. Text representations transform the textural docum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1406.1580  شماره 

صفحات  -

تاریخ انتشار 2014